Чудеса фрактальной графики

001 Фракталы

В век цифровых технологий компьютерной графикой никого не удивишь. Однако, про такое направление как фрактальная графика слышали далеко не все. Что же такое фрактальная графика? Что такое фрактал и как его нарисовать?

Принцип фрактала

Прежде чем ответить на эти вопросы, давайте немного заглянем в историю. Термин «фрактал» появился в 1975 году благодаря математику, создателю фрактальной геометрии Бенуа Мандельброту. Он внёс огромный вклад в понимание этого явления в природе и жизни. Много интересной информации на эту тему можно найти в его известной книге «Фрактальная геометрия природы».

А теперь рассмотрим что же такое фрактал? Если вкратце, то фрактал — это повторяющееся самоподобие. Происходит это слово от латинского fractus — что значит дроблёный, разбитый. То есть фигура, состоящая из частей, которые похожи на неё — и есть фрактал.

Если брать примеры из природы, то фракталами являются снежинки, извилистая линия побережья, кроны деревьев. Свойства фрактала очень хорошо демонстрирует снежинка. Мельчайшие кристаллики из которых она состоит, повторяются и образуют такие же кристаллы, но уже большего размера. То же самое можно увидеть и в деревьях. Из ветки крупного размера вырастает такая же ветка, но уже меньшего размера, а из этой ветки растет ещё меньшая веточка и т. д. То есть одинаковые по форме ветви повторяются, уменьшаясь в размерах. А это и есть фрактал — повторяющееся самоподобие.

Кстати, если мы захотим увеличить картинку с фрактальной структурой, то это будет «бегом по кругу», так как фрактал станет увеличиваться бесконечно. Мы будем видеть ту же самую картинку, несмотря на увеличение. Бесконечность при увеличении или уменьшении является удивительным свойством фракталов.

Как строится фрактал?

Чтобы нарисовать фрактал, воспользуемся треугольником Серпинского. Предложенный польским математиком Вацлавом Серпинским ещё в 1915 году, этот фрактал стал широко известен и замечательно иллюстрирует принцип построения фракталов. Вот схема его построения:

002 Треугольник Серпинского построение

В качестве основной фигуры здесь используется равносторонний треугольник. Отмечаем середину на каждой из его сторон. Затем соединяем линиями эти три точки. В результате, внутри нашего треугольника образуются ещё три треугольника, но уже меньшего размера. Далее повторяем дробление каждого из этих трёх треугольников. Получаем уже девять новых фигур, затем — двадцать семь… И так до бесконечности. И всё это множество находится внутри первоначального треугольника. Поэтому при приближении картинки в электронном виде возникает ощущение бесконечности.

003 Треугольник Серпинского

Фрактальная графика

Итак, что же из себя представляет фрактальная графика? Мы неслучайно рассмотрели суть фрактала и принцип его построения, потому что на этом и основывается фрактальная графика. Чтобы создать такое графическое изображение художники используют специальные редакторы. Фрактальное изображение в них формируется из объектов-родителей и объектов-наследников и рассчитывается посредством математических формул. Поэтому графические файлы в этих программах весят немного (в отличие от растровой графики). В качестве примера редактора фрактальной графики, можно назвать ChaosPro. Это бесплатный генератор фракталов, работающий в режиме реального времени. Вот ряд интересных изображений сгенерированных в ChaosPro:

004 Фракталы

005 Фракталы

006 Фракталы

007 Фракталы

008 Фракталы

009 Фракталы

010 Фракталы

011 Фракталы

012 Фракталы

013 Фракталы

014 Фракталы

015 Фракталы

016 Фракталы

017 Фракталы

Посредством фрактальной геометрии можно генерировать поверхность воды, облака, горы. Можно с помощью нескольких коэффициентов рассчитать поверхности сложной формы. Таким способом создаются удивительные абстрактные картины, похожие на фантастический инопланетный мир. Свойства фракталов можно использовать и в технической компьютерной графике. Но если отвлечься от практического применения и сосредоточиться на красоте фрактальной графики, то разве это не фантастическое творчество, достойное быть самостоятельным направлением в изобразительном искусстве и просто радовать глаз?

Комментарии закрыты.